Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification
نویسندگان
چکیده
In this work we present Discriminative Random Fields (DRFs), a discriminative framework for the classification of image regions by incorporating neighborhood interactions in the labels as well as the observed data. The discriminative random fields offer several advantages over the conventional Markov Random Field (MRF) framework. First, the DRFs allow to relax the strong assumption of conditional independence of the observed data generally used in the MRF framework for tractability. This assumption is too restrictive for a large number of applications in vision. Second, the DRFs derive their classification power by exploiting the probabilistic discriminative models instead of the generative models used in the MRF framework. Finally, all the parameters in the DRF model are estimated simultaneously from the training data unlike the MRF framework where likelihood parameters are usually learned separately from the field parameters. We illustrate the advantages of the DRFs over the MRF framework in an application of man-made structure detection in natural images taken from the Corel database.
منابع مشابه
Discriminative Fields for Modeling Spatial Dependencies in Natural Images
In this paper we present Discriminative Random Fields (DRF), a discriminative framework for the classification of natural image regions by incorporating neighborhood spatial dependencies in the labels as well as the observed data. The proposed model exploits local discriminative models and allows to relax the assumption of conditional independence of the observed data given the labels, commonly...
متن کاملConditional Random Fields for Land Use/Land Cover Classification and Complex Region Detection
Developing a complex region detection algorithm that is aware of its contextual relations with several classes necessitates statistical frameworks that can encode contextual relations rather than simple rule-based applications or heuristics. In this study, we present a conditional random field (CRF) model that is generated over the results of a robust local discriminative classifier in order to...
متن کاملدو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملTitle of Thesis: Modeling Spatial Correlations for Effective Discriminative Clas- Sifiers Modeling Spatial Correlations for Effective Discriminative Classifiers
Classification — i.e. categorizing data instances into pre-defined categories — is an interesting and challenging task. Many real world problems involve classification, in domains such as medical informatics, image analysis, and text tagging. We consider the challenge of learning a classifier from data. This is especially challenging when data instances are correlated. Here, we focus on learnin...
متن کاملDiscriminative models for spoken language understanding
This paper studies several discriminative models for spoken language understanding (SLU). While all of them fall into the conditional model framework, different optimization criteria lead to conditional random fields, perceptron, minimum classification error and large margin models. The paper discusses the relationship amongst these models and compares them in terms of accuracy, training speed ...
متن کامل